SAEMA Document No. SDN. 14002

Original Issue Date: April 2018
Revision Reference:
Revision Date: Not later than end of April 2020

Guidance Note on Determining the Loads Imposed on Buildings by Equipment Designed in Accordance With BS EN 1808

Disclaimer
Whilst every effort has been made to provide reliable and accurate information, SAEMA cannot take responsibility for any omissions, misinformation or errors posted in relation to this publication. We welcome any corrections or additional information that are relevant to the interpretation of this publication. From time to time this publication may be updated and readers should be aware that the document they are relying on may not be the latest edition. Always check the SAEMA website for the latest issue.
Contents

1. Introduction
2. Regulations and Standards
3. SAEMA Position
4. Purpose
5. Temporary and Specific Examples
6. Platforms With or Without Hoists
7. Load Cases
8. Table
9. Conclusions
10. Recommendations

Appendices
A1. Worked Examples

References
1. Introduction

This document has been prepared to assist various people in the Façade Access Industry (Consultants, Main Contractors, Structural Engineers CDM Co-ordinators, etc) with the interpretation of the loadings that will be imposed onto the building by equipment designed to BS EN 1808.

2. Regulations and Standards

BS EN 1808 is a ‘factory gate’ standard and provides the manner in which the Suspended Access Equipment (SAE) should be designed.

However, BS EN 1808 does not provide clear information on what loads the SAE will transmit to the building or how the structural engineer should treat those loads.

3. SAEMA Position

Due to the variety of interpretations that have been encountered, SAEMA considers it necessary to develop this document to clarify the situation. SAEMA has produced this guide to provide an interpretation of the load cases that are found in BS EN 1808 and their effect on the building. This guide represents SAEMA’S interpretation of BS EN 1808 with respect to loading to buildings and does not deal with the design of the equipment itself.

4. Purpose

The principal aim of this document is to provide guidance to designers of SAE, Permanent and Temporary, in the production of information to those involved in designing the structure of the building. It will also help structural engineers understand the loadings factored or otherwise that should be considered when designing the building.
5. **Specific Examples**

Some specific examples of loads and factors applied to them have been given in BS EN 1808 as follows.

Davit Anchors

![Figure 1. Davit Anchors](image)

Parapet Clamps

![Figure 2. Parapet Clamps](image)
In these cases a Factor of Safety of $3 \times$ the Working Load Limit (WLL) is to be used. The high factor of safety is provided in these instances because of the possibility of errors in the installation, i.e.:

- Loads may not distribute evenly between anchors
- Concrete may not be to designed quality
- Anchors may be poorly installed
- Counterweights may become detached

Note: BS 5974: 2017 *Planning, design, setting up and use of temporary suspended access equipment – Code of Practice* has also recognised that when considering temporary SAE the Factor of Safety should be 3.
BMU Calculations
Clause 6.5 of BS EN 1808: 2015 states the reactions that should be given to the structural engineer. This information should include the results of Load Cases 1 and 2b and the stability calculations (Appendix A1).

For strength calculations use Tables 9 and 10.

For stability Calculations use Tables 11 and 12.

There is no distinction between SAE that have platform mounted hoists and SAE with roof mounted hoists. They are either Permanently or Temporarily Installed cradle systems, as defined in the definitions in BS EN 1808, 2015 Safety requirements for suspended access equipment – Design calculation, stability criteria, construction – Examinations and tests.

For Permanent SAE use tables 9 and 11.

For Temporary SAE use tables 10 and 12.

The following abbreviations and symbols are used throughout Tables 9, 10, 11 and 12 within BS EN 1808: 2015.

Fw1 = In-service wind force
FwMH = In-service wind force on material (assumed minimum 5 m2 and a minimum of 625 N)
Fw2 = Out-of-service storm wind force
HWLL = Working load limit of materials hoist
HSW = Mass of all suspended materials hoist items
M = Total mass (Mi + Mo)
Mi = Weight of inboard portion
Mo = Weight of outboard portion
RL = Rated load
SWP = Self weight of platform
Sd is the shock load co-efficient of the secondary safety device.
TSHL = Total suspended hoist load (TSHL = HWLL + HSW)
TSL = Total suspended load
WLL = Working load limit of platform winch
BS EN 1808:2015 Table 9 – Load cases to be considered for strength of the BMU suspension rig itself

Table 9 — Load cases for BMU suspension rig

<table>
<thead>
<tr>
<th>Load case</th>
<th>Total Suspended Load (TSL)</th>
<th>Weight of outboard portion</th>
<th>Weight of inboard portion</th>
<th>Horizontal force (Fh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load case 1 Working load</td>
<td>$1,25 \times TSL + 1,25 \times TSHL$</td>
<td>$1,25 \times Mo$ (a)</td>
<td>$1,25 \times Mi$ (a)</td>
<td>$1,25 \times Fw1 Plat + 1,25 \times Fw1 Rig + 1,25 \times FwMH$ (b) + $2 \times M \times acc$ (c)</td>
</tr>
<tr>
<td>Load case 2a (static test loads)</td>
<td>$1,5 \times RL + 1 \times SWP + 1,25 \times HWLL + 1 \times HSW$</td>
<td>$1 \times Mo$</td>
<td>$1 \times Mi$</td>
<td>0</td>
</tr>
<tr>
<td>Load case 2b – Out of service conditions</td>
<td>generally 0</td>
<td>$1 \times Mo$</td>
<td>$1 \times Mi$</td>
<td>Fw2 Plat + 1 x Fw2 Rig</td>
</tr>
<tr>
<td>Load case 3 – Triggering of the secondary device</td>
<td>$Sd \times TSL + 1,1 \times TSHL$</td>
<td>$1 \times Mo$</td>
<td>$1 \times Mi$</td>
<td>0</td>
</tr>
</tbody>
</table>

The most unfavourable combination of the forces shall be considered for the calculation.

(a) For static suspension rig use $1 \times Mo$ and $1 \times Mi$

(b) $Fw1$ on platform: The minimum horizontal load on the suspension points of the ropes is $0.1 \times TSL$ in all directions

(c) Acceleration forces for traversing suspension rig (trolley) are $2 \times M \times acceleration$ (acc).

BS EN 1808:2015 Table 10 – Load cases to be considered for strength of the TSP suspension rig itself

Table 10 — Load cases for TSP suspension rig

<table>
<thead>
<tr>
<th>Load case</th>
<th>WLL of the hoist(s)</th>
<th>Weight of outboard portion</th>
<th>Weight of inboard portion</th>
<th>Horizontal force (Fh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load case 1 Working load</td>
<td>$1,25 \times WLL + 1,25 \times TSHL$</td>
<td>$1,25 \times Mo$ (a)</td>
<td>$1,25 \times Mi$ (a)</td>
<td>$1,25 \times Fw1 Plat + 1,25 \times Fw1 Rig$ (b)</td>
</tr>
<tr>
<td>Load case 2a</td>
<td>$1,5 \times WLL + 1,25 \times HWLL + 1 \times HSW$</td>
<td>$1 \times Mo$</td>
<td>$1 \times Mi$</td>
<td>0</td>
</tr>
<tr>
<td>Load case 3 – Triggering of the secondary device</td>
<td>$2,5 \times WLL + 1,1 \times TSHL$</td>
<td>$1 \times Mo$</td>
<td>$1 \times Mi$</td>
<td>0</td>
</tr>
<tr>
<td>Out of service condition</td>
<td>generally 0</td>
<td>$1 \times Mo$</td>
<td>$1 \times Mi$</td>
<td>Fw2</td>
</tr>
</tbody>
</table>
BS EN 1808:2015 Table 11 – Load cases to be considered for stability of the BMU suspension rig itself

Table 11 — Stability coefficients for BMU suspension rigs

<table>
<thead>
<tr>
<th></th>
<th>Total suspended load (N)</th>
<th>Weight of outboard portion (N)</th>
<th>Weight of inboard portion (N)</th>
<th>Horizontal force (Fh) (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working stability</td>
<td>2 × TSL + 1.4 × TSHL</td>
<td>1.25 × Mo</td>
<td>1 × Mi</td>
<td>1.25 × Fw1 Plat + 1.25 × Fw1 Rig</td>
</tr>
<tr>
<td>Parking stability</td>
<td>generally 0</td>
<td>1 × Mo</td>
<td>1 × Mi</td>
<td>Fw2 Plat + Fw2 Rig</td>
</tr>
</tbody>
</table>

The most unfavourable combination of the forces shall be considered for the calculation.

BS EN 1808:2015 Table 12 – Load cases to be considered for stability of the TSP suspension rig itself

Table 12 — Stability coefficients for TSP suspension rigs

<table>
<thead>
<tr>
<th></th>
<th>Total suspended load (N)</th>
<th>Weight of outboard portion (N)</th>
<th>Weight of inboard portion (N)</th>
<th>Horizontal force (Fh) (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working stability</td>
<td>3 × WLL + 1.4 × HWLL</td>
<td>1.25 × Mo</td>
<td>1 × Mi</td>
<td>Ignore</td>
</tr>
<tr>
<td>Parking stability</td>
<td>generally 0</td>
<td>1 × Mo</td>
<td>1 × Mi</td>
<td>Fw2 Plat + Fw2 Rig</td>
</tr>
</tbody>
</table>

The most unfavourable combination of the forces shall be considered for the calculation.
6. Load Cases (Permanent)

There are six load cases for consideration for Permanent BMU’s suspending platforms, as follows. Worked examples are given in Appendix A1.

These load cases apply when determining the strength of the BMU design only. Load Case 3 does not transfer the reaction loads onto the structure.

6.1. Load Case 1 – Working Position
As table 9 within BS EN 1808:
\[(1.25 \times \text{TSL}) + (1.25 \times \text{TSHL})\]

6.2. Load Case 2a – Overloads Activated
As Table 9 within BS EN 1808:
\[(1.5 \times \text{RL} + \text{SWP}) + (1.25 \times \text{HWLL} + 1 \times \text{HSW})\]

6.3. Load Case 2b – Parking Plus Storm Winds
As Table 9 within BS EN 1808:
\[0 \times \text{TSL} + (\text{Storm Wind})\]

6.4. Load Case 3 – Extreme Condition
As Table 9 within BS EN 1808:
\[(\text{Sd} \times \text{TSL}) + (1.1 \times \text{TSHL})\]

6.5. BMU Stability
As Table 11 within BS EN 1808:
\[(2 \times \text{TSL}) + (1.4 \times \text{TSHL})\]

6.6. Parking Stability
As Table 11 within BS EN 1808:
\[0 \times \text{TSL} + (\text{Storm Wind})\]
7. Conclusions

From the information given in BS EN 1808 and explained above, SAEMA considers that the following loads should be considered by the Structural Engineer for Building Design.

7.1. Load Case 1 Working Load
The load that the building will be expected to resist from the BMU in everyday use. (Live Load) (Structural Engineer to apply a 1.5 factor as Annex D BS EN 1808:2015)

7.2. Load Class 2b Parking Plus Storm Winds
The load that the building will be expected to resist from the BMU during storm conditions. (Structural Engineer to apply a 1.33 factor as Annex D BS EN 1808:2015).

7.3. Stability
The load the building will be expected to resist from the BMU system to consider the system stable. (SAEMA recommend that a Structural Engineer applies a minimum factor of 1.1).
Appendices

A1: Worked Example of a Trolley Unit Stability Calculation

Please note that this is a basic example calculation and does not take into account all factors which a designer may need to consider. For example, wind loadings on materials have not been considered.

Assumed Loadings
TSL = 3.5kN
TSHL = 3kN
Mo = 5kN
Mi = 10kN
Fw1 Plat = 0.2kN
Fw1 Rig = 0.3kN
FwMH = 0.625kN
Lg = Track gauge = 1.8m
CWT is directly over the rear track

Calculate required counterweight for stability using Table 11 BS EN 1808

\[
\begin{align*}
(2.00 \times TSL \times Lsl) + (1.40 \times TSHL \times Lshl) + (1.25 \times Mo \times Lmo) \\
+ (1.25 \times Fw1 \rig \times Lw) + (1.25 \times Fw1 \plat \times Lpr) \\
= (Mi \times Lmi) + (Lg \times CWT)
\end{align*}
\]

\[
\begin{align*}
(2.00 \times 3.50 \times 5.00) + (1.40 \times 3.00 \times 4.50) + (1.25 \times 5.00 \times 2.50) \\
+ (1.25 \times 0.30 \times 1.00) + (1.25 \times 0.20 \times 2.50) \\
= (10.00 \times 0.90) + (1.80 \times CWT)
\end{align*}
\]
\[CWT = 34.19\text{ kN} \]

Calculate Reactions \(Rv_1 \) and \(Rv_2 \) for all load cases

Load Case 1 (6.1)

For \(Rv_1 \), take moments about \(Rv_2 \)

\[
(1.25 \times TSL \times (Lsl + Lg)) + (1.25 \times TSHL \times (Lshl + Lg)) \\
+ (1.25 \times Mo \times (Lmo + Lg)) + (1.25 \times Mi \times Lmi) \\
+ (1.25 \times Fw1 \ plat \times Lpr) + (1.25 \times Fw1 \ rig \times Lw) = (Rv_1 \times Lg)
\]

\[
(1.25 \times 3.50 \times 6.80) + (1.25 \times 3.00 \times 6.30) + (1.25 \times 5.00 \times 4.30) \\
+ (1.25 \times 10.00 \times 0.90) + (1.25 \times 0.20 \times 2.50) \\
+ (1.25 \times 0.30 \times 2.50) = (Rv_1 \times 1.80)
\]

\[29.75 + 23.63 + 26.88 + 11.25 + 0.63 + 0.38 + 0.94 = 1.80Rv_1 \]

\[Rv_1 = 51.92\text{ kN} \]

For \(Rv_2 \), take moments about \(Rv_1 \)

(please note that for the worst case, the wind loads are reversed from the diagram)

\[
(1.25 \times TSL \times Lsl) + (1.25 \times TSHL \times Lshl) + (1.25 \times Mo \times Lmo) \\
- (1.25 \times Mi \times Lmi) - (1.25 \times Fw1 \ plat \times Lpr) \\
- (1.25 \times Fw1 \ rig \times Lw) - (CWT \times Lg) = (Lg \times Rv_2)
\]

\[
(1.25 \times 3.50 \times 5.00) + (1.25 \times 3.00 \times 4.50) + (1.25 \times 5.00 \times 2.50) \\
- (1.25 \times 10.00 \times 0.90) - (1.25 \times 0.20 \times 2.50) \\
- (1.25 \times 0.30 \times 1.00) - (34.19 \times 1.80) = (1.80 \times Rv_2)
\]

\[21.88 + 16.88 + 15.63 - 11.25 - 0.63 - 0.38 - 61.54 = 1.80Rv_2 \]

\[Rv_2 = -10.78\text{ kN} \]
Load Case 2a (6.2)

For Rv₁, take moments about Rv₂
Where HWLL = 2.50kN
HSW = 0.50kN

\[
(1.50 \times RL \times (Lsl + Lg)) + (1.00 \times SWP \times (Lsl + Lg)) + (1.25 \times HWLL \times (Lshl + Lg)) + (1.00 \times HSW \times (Lshl + Lg)) + (Mo \times (Lmo + Lg)) + (Mi \times Lmi) = (Lg \times Rv₁)
\]

\[
(1.50 \times 2.40 \times 6.80) + (1.00 \times 1.10 \times 6.80) + (1.25 \times 2.50 \times 6.30) + (1.00 \times 5.00 \times 6.30) + (1.00 \times 10.00 \times 0.90) = (1.80 \times Rv₁)
\]

24.48 + 7.48 + 19.69 + 3.15 + 21.50 + 9.00 = 1.80Rv₁

\[Rv₁ = 47.39kN\]

For Rv₂, take moments about Rv₁

\[
(1.50 \times RL \times Lsl) + (1.00 \times SWP \times Lsl) + (1.25 \times HWLL \times Lshl) + (1.00 \times HSW \times Lshl) + (Mo \times Lmo) - (Mi \times Lmi) - (CWT \times Lg) = (Lg \times Rv₁)
\]

\[
(1.50 \times 2.40 \times 5.00) + (1.00 \times 1.10 \times 5.00) + (1.25 \times 2.50 \times 4.50) + (1.00 \times 0.50 \times 4.50) + (5.00 \times 2.50) - (10.00 \times 0.90) - (34.19 \times 1.80) = (1.80 \times Rv₂)
\]

18.00 + 5.50 + 14.06 + 2.25 + 12.50 − 9.00 − 61.54 = 1.80Rv₂

\[Rv₂ = -10.13kN\]
Load Case 2b (6.3)

Wind pressure q is 1.1kN/m2, Rig 4m2, plat 2m2
So Fw_2 plat = 2 x 1.1 = 2.2kN
Fw_2 rig = 4 x 1.1 = 4.4kN

For Rv_1, take moments about Rv_2

$$
(0.00 \times TSL \times (Lsl + Lg)) + (0.00 \times TSHL \times (Lshl + Lg)) \\
+ (1.00 \times Mo \times (Lmo + Lg)) + (1.00 \times Mi \times Lmi) \\
+ (1.00 \times Fw2 \ plat \times Lpr) + (1.00 \times Fw2 \ rig \times Lw) = (Lg \times Rv_1)
$$

$$
0.00 + 0.00 + (1.00 \times 5.00 \times 4.30) + (1.00 \times 10.00 \times 0.90) \\
+ (1.00 \times 2.20 \times 2.50) + (1.00 \times 4.40 \times 1.00) = 1.80Rv_1
$$

$$21.50 + 9.00 + 5.50 + 4.40 = 1.80Rv_2$$

$$Rv_1 = 22.44kN$$

For Rv_2, take moments about Rv_1
(please note that for the worst case, the wind loads are reversed from the diagram)

$$
(0.00 \times TSL \times Lsl) + (0.00 \times TSHL \times Lshl) + (1.00 \times Mo \times Lmo) \\
- (1.00 \times Mi \times Lmi) - (1.00 \times Fw2 \ plat \times Lpr) \\
- (1.00 \times Fw2 \ rig \times Lw) - (CWT \times Lg) = (Lg \times Rv_2)
$$

$$
0.00 + 0.00 + (5.00 \times 2.50) - (1.00 \times 10.00 \times 0.90) - (1.00 \times 2.20 \times 2.50) \\
- (1.00 \times 4.40 \times 1.00) - (34.19 \times 1.80) = 1.80Rv_2
$$

$$12.50 - 9.00 - 5.50 - 4.40 - 61.54 = 1.80Rv_2$$

$$Rv_2 = -37.74kN$$
Load Case 3 (6.4)

Sd = 3

For Rv₁ take moments about Rv₂

\[
(3.00 \times TSL \times (Lsl + Lg)) + (1.10 \times TSHL \times (Lshl + Lg)) \\
+ (1.00 \times Mo \times (Lmo + Lg)) + (1.00 \times Mi \times Lmi) = (Lg \times Rv₁)
\]

\[
(3.00 \times 3.50 \times 6.80) + (1.10 \times 3.00 \times 6.30) + (1.00 \times 5.00 \times 4.30) \\
+ (1.00 \times 10.00 \times 0.90) = 1.80 \times Rv₁
\]

71.40 + 20.79 + 21.50 + 9.00 = 1.8Rv₁

\[Rv₁ = 68.16 kN\]

For Rv₂, take moments about Rv₁

\[
(3.00 \times TSL \times Lsl) + (1.10 \times TSHL \times Lshl) + (1.00 \times Mo \times Lmo) \\
- (1.00 \times Mi \times Lmi) - (CWT \times Lg) = (Lg \times Rv₂)
\]

\[
(3.00 \times 3.50 \times 5.00) + (1.10 \times 3.00 \times 4.50) + (1.00 \times 5.00 \times 2.50) \\
- (1.00 \times 10.00 \times 0.90) - (34.19 \times 1.80) = 1.80 \times Rv₂
\]

52.50 + 14.85 + 12.50 − 9.00 − 61.54 = 1.80Rv₁

\[Rv₂ = 5.17 kN\]
Working Stability (6.5)

For Rv_1 take moments about Rv_2

$$\begin{align*}
(2.00 \times TSL \times (Lsl + Lg)) &+ (1.4 \times TSHL \times (Lshl + Lg)) \\
&+ (1.25 \times Mo \times (Lmo + Lg)) + (1.00 \times Mi \times Lmi) \\
&+ (1.25 \times Fw1plat \times Lpr) + (1.25 \times Fw1rig \times Lw) = Lg \times Rv_1
\end{align*}$$

$$\begin{align*}
(2.00 \times 3.50 \times 6.80) &+ (1.40 \times 3.00 \times 6.30) + (1.25 \times 5.00 \times 4.30) \\
&+ (1.00 \times 10.00 \times 0.90) + (1.25 \times 0.20 \times 2.50) \\
&+ (1.25 \times 0.30 \times 1.00) = 1.80Rv_1
\end{align*}$$

$$47.60 + 26.46 + 26.88 + 9.00 + 0.63 + 0.38 = 1.80Rv_1$$

$$Rv_1 = 61.64 \text{kN}$$

For Rv_2, take moments about Rv_1

$$\begin{align*}
(2.00 \times TSL \times Lsl) &+ (1.4 \times TSHL \times Lshl) + (1.25 \times Mo \times Lmo) \\
&- (1.00 \times Mi \times Lmi) - (CWT \times Lg) + (1.25 \times Fw1plat \times Lpr) \\
&+ (1.25 \times Fw1rig \times Lw) = Lg \times Rv_2
\end{align*}$$

$$\begin{align*}
(2.00 \times 3.50 \times 5.00) &+ (1.40 \times 3.00 \times 4.50) + (1.25 \times 5.00 \times 2.50) \\
&- (1.00 \times 10.00 \times 0.90) - (34.19 \times 1.80) + (1.25 \times 0.2 \times 2.50) \\
&+ (1.25 \times 0.3 \times 1.00) = 1.80Rv_2
\end{align*}$$

$$35.00 + 18.90 + 15.63 - 9.00 - 61.54 + 0.63 + 0.38 = 1.80Rv_2$$

$$Rv_2 = 0.00 \text{kN}$$
Parking Stability (6.6)

Storm wind pressure q is 1.1kN/m², rig 4m², plat 2m²

Therefore:

$$F_{w2\text{plat}} = 2.00 \times 1.10 = 2.20kN$$
$$F_{w2\text{rig}} = 4.00 \times 1.10 = 4.40kN$$

For Rv_1, take moments about Rv_2

$$\begin{align*}
(0.00 \times TSL \times (Lsl + Lg)) &+ (0.00 \times TSHL \times (Lshl + Lg)) \\
&+ (1.00 \times Mo \times (Lmo + Lg)) &+ (1.00 \times Mi \times Lmi) \\
&+ (1.00 \times Fw2\text{plat} \times Lpr) &+ (1.00 \times Fw2\text{rig} \times Lw) = Lg \times Rv_1
\end{align*}$$

$$0.00 + 0.00 + (1.00 \times 5.00 \times 4.30) + (1.00 \times 10.00 \times 0.90) + (1.00 \times 2.20 \times 2.50)$$
$$+ (1.00 \times 4.40 \times 1.00) = 1.80Rv_1$$

$$21.50 + 9.00 + 5.50 + 4.40 = 1.80Rv_1$$

$$Rv_1 = 22.44kN$$

For Rv_2, take moments about Rv_1

(please note that for the worst case, the wind loads are reversed from the diagram)

$$\begin{align*}
(0.00 \times TSL \times Lsl) &+ (0.00 \times TSHL \times Lshl) &+ (1.00 \times Mo \times Lmo) \\
&- (1.00 \times Mi \times Lmi) &- (CWT \times Lg) &- (1.00 \times Fw2\text{plat} \times Lpr) \\
&- (1.00 \times Fw2\text{rig} \times Lw) = Lg \times Rv_2
\end{align*}$$

$$0.00 + 0.00 + (1.00 \times 5.00 \times 2.50) - (1.00 \times 10 \times 0.9) - (34.18 \times 1.80)$$
$$- (1.00 \times 2.20 \times 2.50) - (1.00 \times 4.40 \times 1.00) = (1.80 \times Rv_2)$$

$$12.50 - 9.00 - 61.54 - 5.50 - 4.40 = 1.80Rv_2$$

$$Rv_2 = -37.74kN$$
Table of Results

Table 1. Results of worked examples in Appendix A1

<table>
<thead>
<tr>
<th>Case</th>
<th>Description</th>
<th>(R_{v1}) kN</th>
<th>(R_{v2}) kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Load Case 1</td>
<td>51.92</td>
<td>-10.78</td>
</tr>
<tr>
<td>6.2</td>
<td>Load Case 2a</td>
<td>47.39</td>
<td>-10.13</td>
</tr>
<tr>
<td>6.3</td>
<td>Load Case 2b</td>
<td>22.44</td>
<td>-37.74</td>
</tr>
<tr>
<td>6.4</td>
<td>Load Case 3</td>
<td>68.16</td>
<td>5.17</td>
</tr>
<tr>
<td>6.5</td>
<td>Stability</td>
<td>61.64</td>
<td>0.00</td>
</tr>
<tr>
<td>6.6</td>
<td>Parking</td>
<td>22.44</td>
<td>-37.74</td>
</tr>
</tbody>
</table>